Phylogenetic trees and the tropical geometry of flag varieties

نویسنده

  • Christopher Manon
چکیده

We will discuss some recent theorems relating the space of weighted phylogenetic trees to the tropical varieties of each flag variety of type A. We will also discuss the tropicalizations of the functions corresponding to semi-standard tableaux, in particular we relate them to familiar functions from phylogenetics. We close with some remarks on the generalization of these results to the tropical geometry of arbitrary flag varieties. This involves the family of Bergman complexes derived from the hyperplane arrangements associated to simple Dynkin diagrams. Résumé. Nous allons discuter de quelques théorémes récents concernant l’espace des arbres phylogénétiques aux variétés Tropicales de chaque variété de drapeuaux de type A. Nous allons également discuter des tropicalizations des fonctions correspondant á tableaux semi-standard, en particulier, nous les rapporter á des fonctions familiéres de la phylogénétique. Nous terminerons avec quelques remarques sur la généralisation de ces résultats á la géométrie tropicale de variétés de drapeaux arbitraires. Il s’agit de la famille de complexes Bergman provenant des arrangements d’hyperplans associés á des diagrammes de Dynkin simples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dissimilarity Maps on Trees and the Representation Theory of GLn(ℂ)

We revisit representation theory in type A, used previously to establish that the dissimilarity vectors of phylogenetic trees are points on the tropical Grassmannian variety. We use a different version of this construction to show that the space of phylogenetic trees Kn maps to the tropical varieties of every flag variety of GLn(C). Using this map, we find a tropical function on the space of ph...

متن کامل

Phylogenetic Algebraic Geometry

Phylogenetic algebraic geometry is concerned with certain complex projective algebraic varieties derived from finite trees. Real positive points on these varieties represent probabilistic models of evolution. For small trees, we recover classical geometric objects, such as toric and determinantal varieties and their secant varieties, but larger trees lead to new and largely unexplored territory...

متن کامل

Tropical Convexity

The notions of convexity and convex polytopes are introduced in the setting of tropical geometry. Combinatorial types of tropical polytopes are shown to be in bijection with regular triangulations of products of two simplices. Applications to phylogenetic trees are discussed.

متن کامل

The tropical Grassmannian

In tropical algebraic geometry, the solution sets of polynomial equations are piecewise-linear. We introduce the tropical variety of a polynomial ideal, and we identify it with a polyhedral subcomplex of the Gröbner fan. The tropical Grassmannian arises in this manner from the ideal of quadratic Plücker relations. It is shown to parametrize all tropical linear spaces. Lines in tropical projecti...

متن کامل

Commuting Hermitian varieties and the flag geometry of PG(2, q)

A connection between commuting Hermitian varieties of PG(5, q2) and the flag geometry of PG(2, q2), q odd, is showed. In particular, we use this connection to provide a full embedding of this flag geometry in the Hermitian variety H(8, q2) of PG(8, q2). Mathematics Subject Classification (2002): 51E15, 05B25, 20G40.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012